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Abstract. In many applications, one may be interested in estimating the4

probability of a released solute reaching a particular target region in a ran-5

domly heterogeneous porous medium. The conventional Monte Carlo method6

can be used for such a purpose. However, if the probability to be estimated7

is relatively small, an extremely large number of realizations (or particles)8

may be required to obtain a reasonably accurate estimate. In this study, we9

introduce a new approach, importance sampling Monte Carlo simulation (ISMC),10

to efficiently estimate such a small probability. In the conventional Monte11

Carlo simulations (CMC), the probability of interest is derived from an en-12

semble of all possible trajectories that are attributed to heterogeneity of the13

hydraulic conductivity field (assuming the local dispersion is negligible). In14

the importance sampling approach, such trajectories are taken from a mod-15

ified ensemble so that more solute particles will reach the target region. We16

do so by adding an artificial spatially-varying velocity field to the true ve-17

locity field. Since the samples are taken from a biased ensemble, the outputs18

from simulations are then weighted in such a way that the bias introduced19

by sampling from the modified ensemble will be exactly corrected. The gen-20

eral procedure of this importance sampling approach as well as its applica-21

bility to subsurface transport problems has been illustrated using several ex-22

amples for which analytical solutions are available. The comparison of re-23

sults from analytical solutions, the conventional Monte Carlo method, and24

the importance sampling approach demonstrates that the latter is compu-25
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tational much more efficient than the conventional Monte Carlo simulations,26

especially when the probability of interest in very small.27
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1. Introduction

Geological formations are ubiquitously heterogeneous and thus fluid flow and solute28

transport processes in these formations are normally treated as stochastic processes.29

Stochastic approaches to flow and transport in heterogeneous porous media have been30

extensively studied in the last two decades, and many theoretical models have been de-31

veloped [Dagan,1989; Gelhar, 1993; Zhang, 2002]. These stochastic models include, for32

instance, Monte Carlo simulations, moment-equation methods [Zhang, 1998; Guadagnini33

and Neuman, 1999; Tartakovsky et al., 1999], spectral methods [Yeh and Gelhar, 1985; Li34

and McLaughlin, 1991], KL-based moment methods [Zhang and Lu, 2004; Lu and Zhang,35

2004a; Lu and Zhang, 2004b], Lu and Zhang, 2007], and probability collocation methods36

[Li and Zhang, 2007]. Except for some special cases in which analytical solutions are avail-37

able [Osnes, 1995; Lu and Zhang, 2005], most of these models rely on numerical solutions38

of the stochastic partial differential equations. A detailed comparison on performance of39

the Monte Carlo method and moment-equation methods can be found in [Lu and Zhang,40

2004b].41

The moment-equation-based approach in many cases works well for relatively large vari-42

ations of medium properties [Tartakovsky et al., 1999]. However, in general it is restricted43

to small variabilities of medium properties. More importantly, in the moment method,44

one has to solve covariance equations as many times as the number of nodes, although it45

may render accurate solutions with coarser numerical grids (of fewer nodes) than the grid46

in the Monte Carlo method, Thus, this approach can also be computationally demanding,47

in particular, for simulating field-scale problems. The moment-equation method based on48
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Karhunen-Loeve decomposition (KLME) does not require to solve the covariance equa-49

tions directly and only needs to solve a few hundred modes of the state variables (e.g.,50

hydraulic head or solute concentration) on relatively coarse numerical grids [Zhang and Lu,51

2004]. The KLME method has been extended to solve non-linear unsaturated flow prob-52

lems [Yang et al., 2004], conditional simulations [Lu and Zhang, 2004a], non-stationary53

fields with zonation [Lu and Zhang, 2007], and multi-phase flow problems [Chen et al.,54

2006]. This method may be used to conduct three-dimensional field-scale simulations [Lu55

and Zhang, 2006] if the heterogeneous random field (say, hydraulic conductivity) can be56

easily decomposed, for example, if the covariance of the random field is a separable expo-57

nential function for which the field can be analytically decomposed. The computational58

cost of the Karhunen-Loeve decomposition at the field scale can be high if the covariance59

function has to be decomposed numerically.60

The Monte Carlo method is still widely used in practical applications. This approach61

is conceptually straightforward, which is accomplished by generating a large number of62

equally likely random realizations of the parameter fields, solving deterministic flow and/or63

transport equations for each realization, and averaging the results over all realizations to64

obtain statistical moments of state variables. This approach has an advantage of applying65

to a very broad range of both linear and nonlinear flow and transport problems, but has66

a number of potential drawbacks [Tartakovsky et al., 1999].67

A major disadvantage of the Monte Carlo method, among others, is the requirement68

for large computational effort. This is partial due to fine numerical grids and small69

time steps required to properly resolve high frequency space-time fluctuations in random70

parameters, which leads to large computational effort for each individual realization. This71
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is particularly true if both physical and chemical heterogeneities, as well as uncertainties72

in initial and boundary conditions, are considered. In addition, to ensure sample moments73

of state variables converge to their theoretical ensemble values, a large number of Monte74

Carlo simulations are often required (typically a few thousand realizations, depending75

on the degree of medium heterogeneity). This is because the estimation error of the76

Monte Carlo method is inversely proportional to the square root of the sample size. The77

estimation error decreases with the sample size but the rate of convergence is rather slow.78

The importance sampling method is one of effective techniques that can reduce the79

estimation error much fast. This technique has been extensively used in communication80

theory in simulating rare events [Chen et al., 1993; Sadowsky, 1993]. Applications in81

other fields include, for example, computing probabilities of low-energy nuclear collisions82

[Mazonka et al., 1998] and calculating rate constants for transitions between stable states83

[Dellago et al., 1998]. A detailed mathematical framework for importance sampling can84

be found in Glynn [1989] and a thorough review on this topic can be found in Smith [1997].85

Lu and Zhang [2003a] applied the importance sampling method to solve flow and trans-86

port problems in random porous media. They illustrated the method using two one-87

dimensional flow and transport problems by assuming that the input random variable is88

a random constant. By the importance sampling method, they were able to substantially89

reduce computational effort required by the CMC method. However, the method has been90

limited to cases with random variables rather than correlated random fields.91

In this paper, we are interested in estimating the probability of a released solute reaching92

a particular target region in a randomly heterogeneous porous medium. The conventional93

Monte Carlo method can be used for such a purpose, but the computational cost could94
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be very high if the probability to be estimated is relatively small. In the conventional95

Monte Carlo simulations, the probability of interest is derived from an ensemble of all96

possible trajectories that are attributed to heterogeneities of the hydraulic conductivity97

field (assuming local dispersion is negligible). In the importance sampling approach,98

such trajectories are taken from a modified ensemble so that more solute particles will99

reach the target region. Because the samples are taken from a biased ensemble, the100

outputs from simulations are then weighted in such a way that the bias introduced by101

sampling from the modified ensemble will be exactly corrected. The comparison of results102

from analytical solutions, the CMC method, and ISMC approach demonstrates that the103

latter is computationally much more efficient than the conventional Monte Carlo method,104

especially when the probability of interest in very small.105

This paper is organized as follows. We first introduce some basic concepts of the im-106

portance sampling method in Section 2. The Lagrangian equation for solute transport107

in heterogeneous porous media is revisited in Section 3. In Section 4, statistical distri-108

butions of Lagrangian trajectories are derived and the importance sampling technique is109

applied to the problem. Two numerical examples are given in Section 5, followed by a110

short discussion and conclusion in Section 6.111

2. Basic Concepts of Importance Sampling Techniques

The purpose of applying the importance sampling technique is to obtain an accurate112

estimate of a quantity of interest with fewer samples than required by the CMC method.113

Two major steps are involved in the importance sampling technique. First, one needs to114

modify the process being simulated such that it is much easy to simulate the modified115

process, which is characterized by a new probability density function other than the origi-116
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nal density function. In modeling, instead of taking samples from the original probability117

density function, samples are taken from this new probability density function, called118

importance density function, such that some “important” regions of the sample space get119

more samples. The effectiveness of this approach depends on the choice of the importance120

density function. Thus a fundamental issue in implementing the importance sampling121

technique is how to select a good density function. Second, because samples are taken122

from a biased density function, one needs to correct the bias by averaging the output123

from different samples (realizations) using weights that are related to both the original124

and modified density functions, such that the mean of the quantity being estimated is125

preserved.126

Let Ω be a probability space and fT (X) be a probability density function defined on127

this space, where subscript T stands for the target distribution. We want to derive128

the moments of function θ(X), where θ is a specified, deterministic function (called score129

function). For example, if X is a particle’s trajectory or a path between its release location130

and a pre-defined target region, θ(X) can be a function with two values, being one if the131

particle reaches the target region or zero otherwise. By definition, the mean of θ can be132

written as133

〈θ〉T = ET [θ(X)] =
∫

Ω

θ(x)fT (x)dx, (1)134

where ET represents statistical expectation under the target density function fT , and 〈θ〉T135

denotes the mean of θ under density function fT . To estimate the mean from (1) using136

the CMC method, one randomly samples a sequence of Xi, i = 1, N , from the density137
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function fT (x) and computes the sample mean138

θ =
1

N

N
∑

i=1

θ(Xi). (2)139

Since Xi, i = 1, N , are independent identically distributed (i.i.d.) random variables, it140

can be shown that ET [θ] = 〈θ〉T , i.e., θ is an unbiased estimator of 〈θ〉T . The variance of141

θ can be computed as142

σ2
θ = E{[θ − 〈θ〉T ]2} =

∫

Ω

θ2(x)fT (x)dx − 〈θ〉2T . (3)143

Since the score function satisfies θ2 = θ, the first term in (3) is the same as the mean144

and thus the variance can be written as σ2
θ = 〈θ〉T (1 − 〈θ〉T ). For a given level of desired145

accuracy ε, the number of required Monte Carlo simulations, Nε,MC , can be estimated146

from the following equation [Lu and Zhang, 2003a]:147

Nε,MC =
σ2

θ

ε2〈θ〉2T
=

1 − 〈θ〉T
ε2〈θ〉T

. (4)148

This equation indicates that the number of required Monte Carlo simulations is inversely149

proportional to the mean value 〈θ〉T , which means that, if 〈θ〉T is very small, a large150

number of Monte Carlo simulations will be required. Because the statistical error of the151

mean estimation in (2) is inversely proportional to
√

N , if we want to reduce the error152

by a factor of two we have to increase the sample size by a factor of four. Certainly, the153

convergence rate of the CMC method is rather slow. The importance sampling technique154

is a way that reduces the estimation variance and thus reduces the statistical error much155

faster than the CMC method does.156

Suppose we sample Xi, i = 1, N , from another (sampling) density function fS(x) rather157

than the original target density function fT (x), where fS(x) is zero only if fT (x) is zero.158

To preserve the mean (i.e., to correct the bias), we define a weight function w(x) =159
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fT (x)/fS(x), and the expectation under density function fS(x) then can be determined160

〈θ〉S = ES[w(X)θ(X)] =
∫

Ω

θ(x)w(x)fS(x)dx161

=
∫

Ω

θ(x)fT (x)dx162

= 〈θ〉T , (5)163

which means that the mean remains the same though the samples are taken biasly from164

the density function fS(x).165

From (5) one can construct an estimator based on samples Xi, i = 1, N :166

θ =
1

N

N
∑

i=1

θ(Xi)w(Xi), (6)167

i.e., the contribution of sample Xi in θ is weighted by w(xi) and the bias due to sampling168

from the biased importance density function has been corrected. The variance of the169

estimator can be written as170

σ2
θ,S = ES[θ2w2] − (ES[wθ])2 =

∫

Ω

θ2w2fS(x)dx − 〈θ〉2S171

=
∫

Ω

θ2wfT (x)dx − 〈θ〉2S, (7)172

where ES denotes the expectation under the sampling density function fS. By noticing173

that the second terms in (3) and (7) are the same, it is seen that the estimate variance174

can be reduced by choosing the weighting function w such that on averaging it is much175

smaller than unity.176

For a given accuracy ε, the number of required simulations can be derived similarly as177

Nε,ISMC = σ2
θ,S/ε2〈θ〉2S. The ratio of variances γ = Nε,MC/Nε,ISMC is a measure of the178

efficiency (performance) of the importance sampling method, which depends on the choice179

of the importance density function. This means that, comparing to the CMC, sampling180

from the importance density function may allow us to estimate the mean with a small181
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sample size for a given accuracy, or with a much better accuracy for a given sample size.182

In fact, as will be shown later, the Monte Carlo approach based on importance sampling183

techniques makes it possible to solve some problems that cannot be efficiently solved by184

the conventional Monte Carlo simulations.185

3. Lagrangian Transport Equations

In this study, we are interested in probabilities that a particle released at a known186

position X0 reaches some particular areas. For a particle of conservative species originating187

from location X0 at t = t0, its trajectory is described by the following kinetic equation:188

dX(t)

dt
= V[X(t)], (8)189

with the initial condition X(0) = X0, where X(t) stands for particle’s position at time t190

and V[X(t)] denotes the (Lagrangian) velocity of the particle. It should be emphasized191

that even if in the case that the flow field is steady state, the particle’s (Lagrangian)192

velocity V[X(t)] may still be time-dependent if the (Eulerian) flow field is spatially non-193

stationary, which may be caused by, for example, nonstationarity of soil properties or194

appropriate boundary conditions.195

Following Lu and Zhang [2003b], when the Eulerian velocity is treated as a random196

space function, the particle’s Lagrangian velocity and its position should also be treated197

as random functions. Let us denote X(t) as X when there is no confusion. We may198

decompose the particle position X into its mean and fluctuation: X = 〈X〉 + X′. With199

Taylor expansion we may expand the Lagrangian velocity V(X) at the mean position 〈X〉200

as201

V(X) = V(〈X〉) + (X′ · ∇)V(〈X〉) +
1

2
(X′ · ∇)2V(〈X〉) + · · · . (9)202
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Substituting (9) into (8) leads to203

dX

dt
= 〈V(〈X〉)〉+ V′(〈X〉) + (X′ · ∇)〈V(〈X〉)〉, (10)204

with the initial condition X(0) = X0, or205

dX

dt
= 〈V(〈X〉)〉+ V′(〈X〉) + B(t)X′, (11)206

where Bij(t) = ∂〈Vi(Xt)〉/∂Xt,j|〈X〉 is the derivative of particle’s mean velocity with re-207

spect to its trajectory, evaluated at the current position 〈X(t)〉. Lu and Zhang [2003b]208

considered the general case of solute spreading in a spatially nonstationary flow field,209

where the mean flow may vary spatially in both magnitude and direction, and derived210

the second moments of X on the basis of the general expression (11). The special case of211

Bij(t) ≡ 0 represents the uniform mean flow condition [e.g., Dagan, 1989]. For simplicity212

in our discussion, we ignore the last term in (11), which is a good approximation if Bij(t)213

is small [Indelman and Rubin, 1996; Sun and Zhang, 2000; Lu and Zhang, 2003b].214

4. Statistical Properties of Trajectories

Consider the solute transport process that is described by the Lagrangian transport215

equation as derived in the previous section:216

dX

dt
= 〈V(〈X(t)〉)〉+ V′(〈X(t)〉), (12)217

for 0 ≤ t ≤ τ . Any single realization of this process can be described by a trajectory X(t),218

0 ≤ t ≤ τ , with X(0) = X0. We denote all possible trajectories by an ensemble T219

T (τ) =
{

X(t)
∣

∣

∣ Ẋ = 〈V〉 + V′, X(0) = X0; 0 ≤ t ≤ τ
}

. (13)220

We are interested in the probability of a particle released at source X0 reaching a specific221

region Ω0, a subdomain of the simulation domain D, at time τ (Fig. 1). Now we introduce222
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a functional Θ[X(t)] which equal to 1 if X(τ) ∈ Ω0 and 0 otherwise. The probability being223

sought, P = 〈Θ〉T , is the average of this functional over the ensemble T defined in (13).224

We can compute P by sampling randomly from ensemble T and counting the number of225

hits:226

P ≈ 1

N

N
∑

n=1

Θ[XT
n (t)], (14)227

where XT
n is the nth independent simulation (sampling) from ensemble T . For a very small228

value of P , a very large number of simulations are required.229

Now we consider a modified version of (12)230

dX

dt
= 〈V(〈X(t)〉)〉+ ∆V + V′(〈X(t)〉), (15)231

where ∆V is a velocity field added to the original velocity field. Later we will see that this232

added velocity field will affect the convergence rate of the importance sampling method.233

The ensemble of trajectories corresponding to (15) can be written as:234

S(τ) =
{

X(t)
∣

∣

∣ Ẋ = 〈V〉+ ∆V + V′, X(0) = X0; 0 ≤ t ≤ τ
}

. (16)235

If we define the weight function as236

w(X(t)) =
pT (X(t))

pS(X(t))
, (17)237

where pT (X(t)) and pS(X(t)) are the probabilities of sampling X(t) from ensembles T238

and S, respectively, the probability to be sought can be written as239

P = 〈wΘ〉S ≈ 1

N

N
∑

n=1

w(XS
n(t)) Θ(XS

n(t)). (18)240

Here XS
n(t) is the nth independent simulation using the modified version of the transport241

equation. The estimation variance can be computed similarly using242

σ2
ISMC = 〈w2Θ2〉 − 〈wΘ〉2S ≈ 1

N

N
∑

n=1

w2(XS
n(t)) Θ(XS

n(t)) − P 2. (19)243
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Now the problem becomes how to evaluate the weight function w, or more precisely, how244

to estimate probabilities pT and pS from equations (12) and (15), which differ by an added245

velocity field. It should be noted that one does not need to actually sample trajectories246

X(t) from ensemble T but only need to evaluate probabilities pT (X) and pS(X) for samples247

X taken from ensemble S.248

More general, we consider the following equation249

dX

dt
= U + V′(〈X(t)〉), (20)250

where U is the mean velocity. Equations (12) and (15) are two instances of (20). Discretize251

the trajectory X(t), 0 ≤ t ≤ τ , into M equal increments in time as Xm = X(mδt),252

m = 1, M , δt = τ/M (see Fig. 1). The probability that the trajectory starts from X0 at253

t = 0 and passes (X1, · · · ,XM) at δt, 2δt, · · · , τ can be found similarly as in Mazonka et254

al. [1998]:255

P (Y|X0) =
[

(2πδt)d det(D)
]−M/2

exp[−A(Z)], (21)256

where d is the dimension of the problem, D is velocity covariance, Z = (X0,Y) =257

(X0,X1, · · · ,XM), and258

A(Z) =
1

2δt

M−1
∑

m=0

(Xm+1 − Xm − Uδt)T D−1 (Xm+1 − Xm − Uδt) . (22)259

Substituting U in (21)-(22) by V and V + ∆V respectively, we can find pT (X(t)) and260

pS(X(t)), and thus the weight function as261

w(X(t)) =
pT (X(t))

pS(X(t))
= exp(−∆A), (23)262

where ∆A, in the limit of δt → 0, can be computed as263

∆A =
1

2

∫ τ

0

(2V′ + ∆V)D−1∆Vdt (24)264
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which can be computed by solving265

dF

dt
=

1

2
(2V′ + ∆V)D−1∆V (25)266

with initial condition F(0) = 0, and then setting ∆A = F(τ). It should be noted that, the267

velocity perturbation V′ is spatially dependent in simulating any single realization and268

it also varies from realization to realization. For each realization (trajectory) sampled269

from ensemble S(τ), all quantities in the integrand of (24), i.e., V′, ∆V and D, are270

evaluated along this trajectory, and thus ∆A, or equivalently weight w, can be different271

from realization to realization.272

5. Illustrative Examples

5.1. Travel time statistics in one-dimensional problems

In the first example, we revisit the one-dimensional transport problem presented in Lu273

and Zhang [2003a]. One of the major reasons for their choosing such a simple example is274

that an analytical solution for this problem is available, and therefore it can serve as the275

basis for comparing the efficiency of the CMC and ISMC methods.276

In their example, they considered one-dimensional saturated flow with prescribed de-277

terministic influx q on the left end and deterministic constant head on the right. The278

hydraulic conductivity was also a deterministic constant. It was assumed that porosity φ279

was a random constant following a normal distribution N(µφ, σ2
φ) and they were interested280

in the probability of particle’s travel time less than a given value T0. Other parameters in281

the example were given as: q = 0.1 m/day and L = 100.0 m. For this particular problem,282

the value of conductivity in the domain and the constant head value at the right end were283

not relevant.284
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Since porosity φ is a random variable, so is the travel time t = Lφ/q. In fact, the travel285

time is also normally distributed: t ∼ N(Lµφ/q, L2σ2
φ/q

2). The probability P (t < T0) can286

be found explicitly as287

PT0
= P (t < T0) = Φ

(

T0q/L − µφ

σφ

)

, (26)288

where Φ(x) is the cumulative density function (cdf) of the standard normal distribution.289

For any given T0, the probability computed from (26) will be used to evaluate the accuracy290

and computational efficiency of the CMC and ISMC methods.291

In the CMC approach, one samples a sequence of φi, i = 1, N . If φi is less than292

or equal to qT0/L, the score function θ(φi) is set to unity. Otherwise, θ(φi) is set to293

zero. The scores from all N samples are collected and the sample mean is calculated:294

P T0,MC ≈ (1/N)
∑N

i=1 θ(φi). If one wants to estimate PT using this approach, for small295

T0, a large number of MC simulations are required to obtain a reasonably accurate results.296

For example, if one wants to estimate the probability that a particle’s travel time is less297

than 100 days, i.e., P (t < 100), which is 1.31 × 10−11, one needs to conduct 7.64 × 1012
298

simulations to retain an accuracy of 10% [Lu and Zhang, 2003a].299

Lu and Zhang [2003a] used an importance sample method based on Mean Translation300

(MT) to shift the mean of the porosity to a lower value that is related to T0. For example,301

for T0 = 100 days, the mean of the porosity was shifted to µφ = 0.1. Certainly, it is302

much easy to get sample values around φ = 0.1 (or equivalently T = 100 days) from303

N(µφ = 0.1, σ2
φ) than from N(µφ = 0.3, σ2

φ). After taking samples φi, i = 1, N from the304

importance density function, the probability to be sought can be found:305

P T,IS ≈ 1

N

N
∑

i=1

θ(φi)w(φi) =
1

N

N
∑

i=1

f(φi)

f1(φi)
θ(φi), (27)306
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where f and f1 represent the probability density function of the original and modified307

(shifted) normal distributions, respectively. By using the importance sampling method,308

they were able to estimate the probability within ±10% accuracy with less then 1,000309

simulations.310

Numerical results from the CMC and ISMC methods are tabulated in Table 1, where311

the number in parentheses is the number of simulations used to compute PT . As expected,312

for an accuracy of 10%, 1,000 simulations is enough for the ISMC approach for T0 value313

as low as 50 days, while a significantly large number of runs is required for the CMC314

approach to achieve the same level of accuracy even for T0 = 200 days. For T0 <= 150315

days, an accurate estimation of PT using the CMC method could not be obtained.316

Now we apply the importance sampling techniques presented in this paper to the same317

problem by first defining two ensembles T (t) and S(t). Since the velocity is a random318

constant over the one-dimensional domain, an ensemble of trajectories can be equivalently319

considered as an ensemble of travel time:320

T (t) =

{

t =
Lφ

q

∣

∣

∣ φ ∼ N(µφ, σ2
φ)

}

, (28)321

and322

S(t) =

{

t =
L

q/φ + ∆v

∣

∣

∣ φ ∼ N(µφ, σ
2
φ)

}

. (29)323

Now we need to find the weight function w by evaluating two probability density functions324

(PDF) of the travel time under the original (target) and modified distributions. The PDF325

of the original distribution can be found by taking the derivative of (26):326

fT (T0) =
q

Lσφ
fn(z); z =

qT0/L − µφ

σφ
, (30)327
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where fn is the PDF of the standard normal distribution. Similarly, by adding a velocity328

component to the original random velocity q/φ, the travel time can be written as t =329

L/(q/φ + ∆v), and the probability that travel time is less than T0 can be written as330

PS = P (t < T0) = P

(

L

q/φ + ∆v
< T0

)

= Φ(u), (31)331

where u = [qT0/(L− T0∆v)− µφ]/σφ. The corresponding density function can be derived332

from (31) by taking its derivative with respect to T0:333

fS(T0) =
qL

(L − T0∆v)2σφ
fn(u). (32)334

From the expressions of fT and fS, one may find the optimized ∆v by minimizing fT /fS,335

which yields336

∆v =
L

T0

− 2q
√

µ2
φ + 8σ2

φ + µφ

. (33)337

If one is interested in cases with T0 > q/µφ, a similar expression can be derived. This338

equation indicates that, for given µφ and σ2
φ, the optimized ∆v is a function of T0. The339

physical meaning of this expression can be easily seen by neglecting σ2
φ (for small variance340

as in our case), which leads to ∆v = L/T0 − q/µφ. It is seen that the second term is341

the first-order mean velocity, while the first term is the “required velocity” such that the342

mean travel time will be T0. Therefore, ∆v in (33) is indeed an extra velocity component343

needed. The values of ∆v ≈ L/T0 − q/µφ for different T0 are listed in Table 1. The344

calculated probability values using the importance sampling method are listed in Table345

1 as PIS with the number of simulations in parentheses. It is seen from the table that,346

using the ISMC approach, we are able to estimate the probabilities using 1000 samples347

only while retaining a high accuracy, even for the probability value as low as in the order348

of 10−17. It should be pointed out that the computed probability values in Table 1 may349
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be slightly different from run to run, depending on the selected random number generator350

and initial random seeds.351

5.2. Two-dimensional problems with random velocity fields

In the second example, we consider a two-dimensional domain Ω = [0, 1000]×[−300, 300]352

(in any consistent units), which is discretized into a grid of 50 × 30 with an element size353

of 20× 20. Although the methodology can be applied to any velocity field, for simplicity,354

in this example we choose a stationary mean velocity 〈v〉 = (v1, v2)
T = (1, 0)T , and355

a velocity fluctuation of v′ = (c1ξ1, c2ξ2)
T , where c1 and c2 are two constants and ξ1356

and ξ2 are standard Gaussian random variables. Nonreactive particles are released at357

X0 = (x0, y0) = (0.1, 0), which is located near the upstream boundary (see to Fig. 1). We358

are interested in the probability that a particle released at X0 reaches a particular region359

Ω0 in the domain.360

In this example, we take Ω0 as a segment on the downstream boundary, Ω0 = {(x, y)|x =361

L1, y ∈ [y1, y2]}, where L1 is the domain size in the x direction. We assume that the ve-362

locity component in the longitudinal direction is deterministic, i.e., c1 = 0, which allows363

us to derive an analytical solution as a benchmark for evaluating the computational ef-364

ficiency of the CMC and ISMC methods. In fact, the spatial distribution of particles365

along the downstream boundary should follow a normal distribution and the probability366

of particle’s reaching the region Ω0 can be derived as367

P (y ∈ Ω0) =
1

2



erf





y2
√

2DL/v1



− erf





y1
√

2DL/v1







 (34)368
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where L = L1 −x0 is the travel distance in x direction, erf the error function, and D = c2
2369

is velocity variance in y direction. In this example, we choose D = 2.0, i.e., the velocity370

fluctuation in the transverse direction, v2, follows a normal distribution N(0, 2).371

Conventional Monte Carlo simulations are conducted for a large number of realizations.372

For each realization, a particle is released from point X0 and at each time step it is moved373

by a mean velocity of v1 in the x direction and a velocity component v2(t) sampled from a374

normal distribution N(0, 2). The particle’s displacements in both directions are recorded375

until it hits the right boundary. In particular, the score function θ is recorded as one if376

the particle reaches Ω0 or zero otherwise. This process is repeated for many realizations377

and the number of particles reaching the target region Ω0 is used to approximate the378

probability P = NΩ0
/N , where N is the total number of simulations and NΩ0

is the number379

of particles reaching Ω0. Certainly, the number of simulations N should be large enough380

to achieve a statistically meaningful approximation of P . The estimated probabilities381

for N = 1000, 10000, and 100000, are illustrated in Figure 2. The analytical solution382

is also compared in the figure. Note that the curves from Monte Carlo simulations are383

shorter than that from the analytical solution because for regions that are far away from384

the central line, it is very difficult for particles to reach these regions and the estimated385

probability using Monte Carlo simulations is essentially zero. For example, if we take386

only 1000 samples (realizations), no particle has displacement larger than 135 on the387

downstream boundary and therefore the estimated probability is zero for all y ≥ 135. As388

the number of simulations increases, some particles may have larger displacement in the y389

direction. And also, for a given distance from the central line, an increase of Monte Carlo390

simulations improves the accuracy of the estimation.391
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The procedure for conducting importance sampling Monte Carlo simulations is similar392

to that in the CMC as described above, except that an extra velocity component ∆v is393

added to the original velocity field in the y direction. This means that the velocity in394

the y direction is ∆v + v2(t), where v2(t) is taken from N(0, 2) at each time step. The395

efficiency of the importance sampling method depends on the magnitude of this added396

velocity component ∆v. In the case of ∆v = 0, the importance sampling simulation is397

the same as the CMC method and the efficiency gain is one.398

The optimized velocity component ∆v may be determined from the release location, the399

target domain, and the mean velocity in the x direction. For example, if Ω0 = {(L1, y)|y ∈400

(200, 210]}, a segment of length 10 and centered at y0 = 205, denoted as L10(205), on the401

right boundary, and if mean velocity v1 = 1.0, we have ∆v = y0v1/L1 = 0.205. Figure402

3 compares particles’ trajectories for the first 20 realizations in the CMC (dashed lines)403

and ISMC (solid lines) methods for Ω0 given above. Without adding ∆v, it is very hard404

for particles to reaching this region, because the probability is about 2.54 × 10−6. If we405

need the estimation to be within 10% accuracy (relative error less than 10%), we have to406

conduct at least 3.93 × 107 Monte Carlo simulations. If we move Ω0 further away from407

the central line (y = 0), for example, for L10(295), even more simulations are required.408

By adding a velocity component ∆v, particles move toward to the target region. In the409

example above, two (heavy lines) out of the first 20 realizations reach the target region.410

Of course, the probability is not one-tenth but needs to be corrected as detailed in the411

previous sections. Using the ISMC method with only 2, 000 simulations, we are able to412

derive a very accuracy estimation of 2.49 × 10−6, i.e., a relative error of about 2% for413
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L10(205) for ∆v given above. The advantage of the ISMC becomes even more obvious for414

much smaller probability.415

Results from the ISMC method with 2,000 samples are compared in Figure 2 against416

those from analytical solutions and from the CMC method with different numbers of417

realizations. The figure shows that the ISMC method with 2,000 samples can accurately418

estimate the probability as low as in the order of 10−11.419

The estimation errors for the CMC can be computed from σ2
MC = P (1 − P ), where P420

is the probability which can be computed from analytical solutions for this case. For the421

ISMC, the estimation variance is computed from (19). The comparison of the estimation422

variance for the CMC and ISMC is depicted in Figure 4. The figure shows that the423

estimation variance from the ISMC is substantially smaller than that from the CMC424

method.425

Because the numbers of required simulations, NMC and NISMC , for any given error ε426

are proportional to the estimation variance, Figure 4 indicates that the ISMC method427

is computationally much more efficient than the CMC method. These two numbers can428

be computed directly from NMC = σ2
CMC/ε2 and NISMC = σ2

ISMC/ε2. The efficiency429

gain for the ISMC method is the ratio of these two numbers γ = NMC/NISMC . Figure 5430

compares the number of required samples as a function of distance from the central line431

for both the CMC and ISMC methods. While NCMC increases quickly as the increase of432

the distance from the central line, NISMC is more or less a constant, ranging from 1,000433

for L10(5) to 1,460 for L10(295). The figure also shows the efficiency gain of the ISMC434

method comparing to the CMC method. The gain ranges from about one for the region435
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L10(5) to as high as 109 for the region L10(295). The advantage of the ISMC method436

becomes more obvious when the probability to be estimated is very small.437

6. Conclusion and Discussion

This study is an extension of Lu and Zhang [2003a], in which the importance sampling438

method was applied to simulate one-dimensional fluid flow and solute transport problems439

with randomly constant properties. In this study we applied importance sampling Monte440

Carlo simulations (ISMC) to estimating the probability of released conservative particles441

reaching some particular regions of interest in multidimensional domains with correlated442

medium properties. This problem may be solved by the conventional Monte Carlo simu-443

lations (CMC), in which samples are taken from an ensemble of all possible trajectories444

or paths (due to the heterogeneities of the porous media). Because the number of re-445

quired simulations is inversely proportional to the probability to be estimated, the CMC446

method is computationally expensive and in some cases it is nearly impossible to estimate447

the probability if its value is very small. Although in many hydrologic applications, we448

may not be very interested in the cases of very small probability, we do not know in449

advance how small the probability is until the value is actually estimated. Therefore, it is450

important to accurately estimate probability associated with events with low probability451

values.452

In the ISMC method, samples are taken from a biased distribution rather than the453

original one such that more samples will be taken in the “important” regions of the454

probability space. The results are then exactly corrected by a weighted average. In455

particular, for transport of conservative solute particles, the ensemble of all trajectories456

is modified by adding an extra velocity field to the original velocity field such that in the457
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new velocity field the particles will move toward the target regions. To preserve the mean,458

we need to make corrections by computing the weighted average.459

The ISMC method has been demonstrated using two examples. In the first example,460

we revisited a one-dimensional transport problem presented in Lu and Zhang [2003a] for461

estimating the probability of a particle’s travel time less than a given value. In the second462

example, particles were released in a two-dimensional domain with a random velocity463

field in the direction perpendicular to the mean flow direction. We chose these two simple464

examples because analytical solutions are available for both examples and they can sever465

as benchmarks for assessing the accuracy and efficiency of the CMC and ISMC methods.466

The computational efficiency of the ISMC method is measured by the efficiency gain,467

which is the ratio of the numbers of required simulations in the CMC and ISMC methods.468

The efficiency of the importance sampling method depends on the choice of the biased469

distribution, which can be determined from the original mean flow field, and the locations470

of the release point and the target region. A different biased distribution may be needed471

for a different target region. Results from two demonstrative examples show that the472

ISMC method is computationally much more efficient than the CMC method and the473

efficiency gain can be many orders of magnitudes.474
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Table 1. Number of simulations required for different values of T0

T0 PT NMC PMC ∆v PIS

300. 0.500 1.00×102 0.499 (1,000) 0.0 0.499 (1,000)
250. 4.78×10−2 1.99×103 4.50 ×10−2 (2,000) 1/15 4.88 ×10−2(1,000)
200. 4.29×10−4 2.33×105 3.78 ×10−4(233, 000) 1/6 4.40 ×10−4 (1,000)
150. 2.87×10−7 3.49 ×108 - 1/3 3.06 ×10−7(1,000)
100. 1.31×10−11 7.64×1012 - 2/3 1.37 ×10−11(1, 000)
50. 3.93×10−17 2.54×1018 - 5/3 3.46 ×10−17(1, 000)
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Figure Captions551

Figure 1 Schematic diagram illustrating the importance sampling method: estimating the552

probability of a solute particle released from a source reaching a particular region of interest, Ω0.553

554

Figure 2 Comparison of probability estimated from analytical solutions, the ISMC method555

with 2,000 samples, and the CMC method with different number of samples.556

557

Figure 3 Twenty trajectories from the CMC method and their corresponding trajectories from558

the ISMC method for estimating the probability that particles reaches the region L10(205).559

560

Figure 4 Comparison of estimation variance of the CMC and ISMC methods.561

562

Figure 5 The number of required samples for the CMC and ISMC methods and the efficiency563

gain of the ISMC method as functions of the distance from the central line.564
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Figure 1. Schematic diagram illustrating the importance sampling method: estimating the

probability of a solute particle released from a source reaching a particular region of interest, Ω0.
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Figure 2. Comparison of probability estimated from analytical solutions, the ISMC method

with 2,000 samples, and the CMC method with different number of samples.
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Figure 3. Twenty trajectories from the CMC method and their corresponding trajectories

from the ISMC method for estimating the probability that particles reaches the region L10(205).
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Figure 4. Comparison of estimation variance of the CMC and ISMC methods.
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Figure 5. The number of required samples for the CMC and ISMC methods and the efficiency

gain of the ISMC method as functions of the distance from the central line.
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